Benha University
Faculty of Engineering (at Shoubra )
Electrical Engineering Department
M.Sc. (Computer Systems Engineering)

Attempt the following questions.


Final Exam
Subject: Advanced Algorithms - CES 608
Date: Sat 18/05/2019
Duration: 3 hours
№ of Questions: 6 in 1 page(s)
Total Mark: 60

## Question 1:

(10 marks)
a) Identify (i) what Euclid's algorithm does for a pair of integers in which the first is smaller than the second and
(ii) how often this can happen during the algorithm's execution.
(02 marks)
b) Sort the following functions according to their order of growth from the lowest to the highest.
(04 marks)

$$
n^{3}, n^{\log 5}, 2^{n}, n \log n, 3^{\log n}, n!, n^{n}, \log n^{8}, \log ^{3} n
$$

c) Solve the following recurrence.

$$
M(n)=2 M(n-1)+1, M(1)=1
$$

## Question 2:

(10 marks)
a) Construct an example of the assignment problem whose optimal solution does not include the smallest element of its cost matrix.
(02 marks)
b) Design and analyze a brute-force algorithm for finding a substring in a given text that matches a specified pattern.
(04 marks)
c) Design and analyze a brute-force algorithm for computing the value of a given polynomial $p(x)$ at a given point $x_{0}$ and determine its worst-case efficiency class.
(04 marks)

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

## Question 3:

(10 marks)
a) Justify whether it is possible to implement insertion sort for sorting linked lists efficiently. ( $\mathbf{0 3}$ marks)
b) Design and analyze an efficient algorithm for the exponentiation problem (finding $a^{n}$ ).
(03 marks)
c) Design and analyze an efficient algorithm for selecting the smallest $k$ elements in a given array of size $n$.
(04 marks)

## Question 4:

a) Apply mergesort to the following array of characters.

$$
[\mathrm{E}, \mathrm{X}, \mathrm{~A}, \mathrm{M}, \mathrm{P}, \mathrm{~L}, \mathrm{E}, \mathrm{~S}]
$$

b) Design and analyze an efficient algorithm for estimating the height of a given binary tree.
(03 marks)
c) Given a set $P$ of $n>1$ points in the Cartesian plane, design and analyze an efficient algorithm for finding the closest pair of points the given set.
(05 marks)

## Question 5:

(10 marks)
a) Compare between Binary Trees, AVL Trees, Red-Black Trees, 2-3 Trees, and B-Trees.
b) Design and analyze an efficient algorithm for checking element uniqueness in a given array.
c) Design and analyze an efficient algorithm for computing the least common multiple (LCM) of two given integers $m$ and $n$.

## Question 6:

(10 marks)
a) Design and analyze a dynamic programming algorithm for the knapsack problem given $n$ items of known weights $w_{1}, \ldots, w_{\mathrm{n}}$ and values $v_{1}, \ldots, v_{\mathrm{n}}$ and a knapsack of capacity $W$.
(05 marks)
b) Apply Kruskal's algorithm to find a minimum spanning tree of the shown graph.
(02 marks)

c) Design_and analyze a greedy algorithm for the change-making problem given an amount $n$ and coin denominations $d_{1}>d_{2}>\ldots>d_{\mathrm{m}}$.
(03 marks)
Good Harvest
Dr: Islam ELSHaarawy

